The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries.

Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards.

ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 120 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries.

ATSC Digital TV Standards include digital high definition television (HDTV), standard definition television (SDTV), data broadcasting, multichannel surround-sound audio, and satellite direct-to-home broadcasting.

Note: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. One or more patent holders have, however, filed a statement regarding the terms on which such patent holder(s) may be willing to grant a license under these rights to individuals or entities desiring to obtain such a license. Details may be obtained from the ATSC Secretary and the patent holder.

This specification is being put forth as a Candidate Standard by the TG3/S34 Specialist Group. This document is an editorial revision of the Working Draft (S34-168r2) dated 9 November 2015. All ATSC members and non-members are encouraged to review and implement this specification and return comments to cs-editor@atsc.org. ATSC Members can also send comments directly to the TG3/S34 Specialist Group. This specification is expected to progress to Proposed Standard after its Candidate Standard period.

Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate Standard approved</td>
<td>23 December 2015</td>
</tr>
<tr>
<td>Note that key points in this document are currently under consideration by TG3/S34. These points are identified as follows:</td>
<td></td>
</tr>
<tr>
<td>- Yellow highlight indicates an editorial TBD (e.g., awaiting a document publication date)</td>
<td></td>
</tr>
<tr>
<td>- Cyan highlight indicates a sections or item that is under development in S34</td>
<td></td>
</tr>
<tr>
<td>Feedback and comments on these points from implementers is encouraged.</td>
<td></td>
</tr>
<tr>
<td>Revision 1 approved</td>
<td>Insert date here</td>
</tr>
</tbody>
</table>
Table of Contents

1. SCOPE ... 1
 1.1 Introduction and Background 1
 1.2 Organization 1

2. REFERENCES ... 1
 2.1 Normative References 1
 2.2 Informative References 2

3. DEFINITION OF TERMS .. 3
 3.1 Compliance Notation 3
 3.2 Treatment of Syntactic Elements 3
 3.2.1 Reserved Elements 3
 3.3 Acronyms and Abbreviations 3
 3.4 Terms 4
 3.5 Extensibility 4
 3.5.1 Backward-compatible Extensibility Mechanisms 4
 3.5.2 Non-backward-compatible Extensibility Mechanisms 5
 3.5.3 Extensions with unknown compatibility 5
 3.5.4 Descriptor Processing Considerations 5

4. SYSTEM OVERVIEW ... 5

5. ACTIVE FORMAT DESCRIPTION ... 5

6. SOURCE CODING SPECIFICATION ... 5
 6.1 HEVC (ISO/IEC 23008-2) 5
 6.2 Video Formats 6
 6.2.1 Legacy SD Video 6
 6.2.2 Interlaced HD video 7
 6.2.3 Progressive Video 8
 6.3 Specific Constraints Regarding Advanced Features 8
 6.3.1 Specific Constraints Regarding Spatial Scalable Coding 9
 6.3.2 Specific Constraints Regarding HDR 10
 6.3.3 Specific Constraints Regarding 3D 10
 6.3.4 Specific Constraints Regarding High Frame Rate Temporal Layering 11
 6.4 Bit Stream Specifications in Addition to Video Coding 12
 6.4.1 Carriage of Active Format Description (AFD) and Bar Data 12
 6.4.2 AFD and Bar Data 12
 6.4.3 Optional Carriage of Closed Captions in the Video Stream 12

7. SIGNALING OF VIDEO CHARACTERISTICS .. 13

ANNEX A : VIDEO INPUTS (INFORMATIVE) .. 14
 A.1 Television production standards 14

ANNEX B : EXAMPLE PROGRESSIVE VIDEO FORMATS (INFORMATIVE) .. 15
 B.1 Example Progressive Video Formats 15

ANNEX C : FIXED/MOBILE HYBRID UHD 3D TELEVISION SYSTEM (INFORMATIVE) 16
 C.1 Overview 16
Index of Figures and Tables

Figure C.1.1 Simulcast of a mobile HD right view and a fixed UHD left view......................... 16
Figure C.1.2 Broadcast of a mobile HD right view and a fixed UHD left view using SHVC. ... 17

Table 5.1 SMPTE ST 2016-1 Table 2 – Video format information .. 5
Table 6.1 Legacy SD Video Formats .. 7
Table 6.2 Interlaced HD Video Formats .. 8
Table 6.3 Multiview View Position SEI Message .. 11
Table 6.4 Multiview Scene Information SEI Message .. 11
Table 7.1 Video Characteristics ... 13
Table A.1.1 Standard Video Production Formats ... 14
Table B.1.1 Example Progressive Video formats ... 15
ATSC Candidate Standard: Video

1. SCOPE

1.1 Introduction and Background
This Standard standardizes HEVC coded video for use in the ATSC 3.0 Digital Television System. It specifies the allowable emission formats as well as advanced features including Spatial Scalable Coding, High Dynamic Range (HDR) video, 3D, and temporal layering.

Formats include Legacy SD video (Section 6.2.1), and Interlaced HD video (Section 6.2.2) for efficient support of existing content as well as Progressive Video 6.2.3, which allows the full range of advanced features.

AFD and Bar Data are defined such that the active area of the picture does not necessarily need to fill the entire coded area. (See Sections 5 and 6.4.)

1.2 Organization
This document is organized as follows:
- Section 1 – Outlines the scope of this document and provides a general introduction.
- Section 2 – Lists references and applicable documents.
- Section 3 – Provides a definition of terms, acronyms, and abbreviations for this document.
- Section 4 – Describes an overview of the system.
- Section 5 – Describes the video processing before video compression.
- Section 6 – Specifies source coding.
- Section 7 – Specifies signaling.
- Annex A – Describes video input standards.
- Annex B – Provides example progressive video formats.
- Annex C – Provides guidance related to fixed/mobile hybrid 3DTV

2. REFERENCES
All referenced documents are subject to revision. Users of this Standard are cautioned that newer editions might or might not be compatible.

2.1 Normative References
The following documents, in whole or in part, as referenced in this document, contain specific provisions that are to be followed strictly in order to implement a provision of this Standard.

¹ Also published by ITU as ITU-T Recommendation H.265.
2.2 Informative References

The following documents contain information that may be helpful in applying this Standard.

3. DEFINITION OF TERMS

With respect to definition of terms, abbreviations, and units, the practice of the Institute of Electrical and Electronics Engineers (IEEE) as outlined in the Institute’s published standards [1] shall be used. Where an abbreviation is not covered by IEEE practice or industry practice differs from IEEE practice, the abbreviation in question will be described in Section 3.3 of this document.

3.1 Compliance Notation

This section defines compliance terms for use by this document:

shall – This word indicates specific provisions that are to be followed strictly (no deviation is permitted).

shall not – This phrase indicates specific provisions that are absolutely prohibited.

should – This word indicates that a certain course of action is preferred but not necessarily required.

should not – This phrase means a certain possibility or course of action is undesirable but not prohibited.

3.2 Treatment of Syntactic Elements

This document contains symbolic references to syntactic elements used in the video subsystem. These references are typographically distinguished by the use of a different font (e.g., restricted), may contain the underscore character (e.g., sequence_end_code) and may consist of character strings that are not English words (e.g., dynrng).

In addition, square brackets within syntactic elements (e.g., fixed_pic_rate_general_flag[i]) have a different meaning than square brackets shown in normal text (e.g., the HEVC video compression standard [2]). In the syntactic elements case, square brackets that enclose an index denote an element of a list, matrix, or array. Square brackets in normal text that include a number indicate a reference cited in Section 2 of this document.

3.2.1 Reserved Elements

One or more reserved bits, symbols, fields, or ranges of values (i.e., elements) may be present in this document. These are used primarily to enable adding new values to a syntactical structure without altering its syntax or causing a problem with backwards compatibility, but they also can be used for other reasons.

The ATSC default value for reserved bits is ‘1.’ There is no default value for other reserved elements. Use of reserved elements except as defined in ATSC Standards or by an industry standards setting body is not permitted. See individual element semantics for mandatory settings and any additional use constraints. As currently-reserved elements may be assigned values and meanings in future versions of this Standard, receiving devices built to this version are expected to ignore all values appearing in currently-reserved elements to avoid possible future failure to function as intended.

3.3 Acronyms and Abbreviations

The following acronyms and abbreviations are used within this document.

2D – Two dimensional

3D – Three dimensional

AFD – Active Format Description

ATSC – Advanced Television Systems Committee
HD – High Definition
HDR – High Dynamic Range
HEVC – High Efficiency Video Coding
HFR – High Frame Rate
IP – Internet Protocol
OFDM – Orthogonal Frequency-Division Multiplexing
PHY – Physical Layer
PLP – Physical Layer Pipe
SCG – Standard Color Gamut
SD – Standard Definition
SEI – Supplemental Enhancement Information
SHVC – Scalable High Efficiency Video Coding
SPS – Sequence Parameter Set
UDP – User Datagram Protocol
UHD – Ultra High Definition
UHDTV – Ultra High Definition Television
VPS – Video Parameter Set
WCG – Wide Color Gamut

3.4 Terms

The following terms are used within this document.

active area – The portion of the video picture area that is being utilized for program content. Also referred to in CEA-CEB16 as the useful image inside the video frame. Active area excludes letterbox bars and pillarbox bars.

additional view – Stereoscopic 3D video component which is used for a legacy, non-3D television service.

High Dynamic Range – A feature that allows representation of video levels with much higher luminance values than is possible with traditional video methods. (See Section 6.3.2.)

High Frame Rate – A picture frequency higher than 60 pictures per second.

Interlaced HD – A specific set of high definition video formats as specified in Section 6.2.

Legacy SD – A specific set of standard definition video formats as specified in Section 6.1.

Progressive Video – A specific set of formats as specified in Section 6.3.

Spatial Scalable Coding – A method of providing low and high resolution versions of content through use of a base and an enhancement layer.

reference view – Stereoscopic 3D video component added to the Reference view video to compose stereoscopic 3D video.

reserved – Set aside for future use by a Standard.

Wide Color Gamut – A feature that allows representation of chrominance levels with much broader range than is possible with BT.709.

3.5 Extensibility

3.5.1 Backward-compatible Extensibility Mechanisms

This Standard includes no known backward-compatible extensibility mechanisms.
3.5.2 Non-backward-compatible Extensibility Mechanisms

Section 7 recommends signaling of the video characteristics that are to be specified in other parts of the ATSC 3.0 standard. Reserved fields in these signaling mechanisms will allow for extensibility, such as allowing the use of codecs other than HEVC.

3.5.3 Extensions with unknown compatibility

This Standard includes no known extensibility mechanisms of unknown compatibility.

3.5.4 Descriptor Processing Considerations

This Standard includes no known descriptor processing considerations.

4. SYSTEM OVERVIEW

[Note: S34 may draft text for this section or may refer to the “System Overview” section of A/300. S34 may defer this decision until A/300 is complete.]

5. ACTIVE FORMAT DESCRIPTION

When the active image area of the emitted video signal does not fill the entire encoded video frame (e.g., when the video is letterboxed or pillarboxed), Active Format Description (AFD) and Bar Data information should be present in the original source video signal in accordance with SMPTE ST 2016-1 [6] and should be present in the emitted video signal. AFD information and Bar Data are used by receivers to optimize the display of images that do not fill the coded frame.

Bar Data values, when used, shall reflect the resolution, line and pixel counts of the original source pictures in the emitted video.

Bar Data values may be used for resolutions that are specified in this document but are not listed in SMPTE ST 2016-1 [5] Table 2, in Section 5.1. As a service to the reader, Table 2 from SMPTE ST 2016-1 [6] (with anticipated UHDTV extensions) is reproduced in Table 5.1.

<table>
<thead>
<tr>
<th>Format</th>
<th>Applicable Production Standard</th>
<th>Pixels x Lines</th>
<th>Coded Pixels</th>
<th>Coded Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>480 Interlaced</td>
<td>SMPTE ST 125</td>
<td>720 x 480</td>
<td>0 – 719</td>
<td>23 – 262</td>
</tr>
<tr>
<td>480 Progressive</td>
<td>SMPTE ST 293</td>
<td>720 x 480</td>
<td>0 – 719</td>
<td>268 - 525</td>
</tr>
<tr>
<td>576 Interlaced</td>
<td>ITU-R BT.656</td>
<td>720 x 576</td>
<td>0 – 719</td>
<td>23 – 310</td>
</tr>
<tr>
<td>576 Progressive</td>
<td>ITU-R BT.1358</td>
<td>720 x 576</td>
<td>0 – 719</td>
<td>336 – 623</td>
</tr>
<tr>
<td>720 Progressive</td>
<td>SMPTE ST 296</td>
<td>1280 x 720</td>
<td>0 – 1279</td>
<td>45 – 620</td>
</tr>
<tr>
<td>1080 Interlaced</td>
<td>SMPTE ST 274</td>
<td>1920 x 1080</td>
<td>0 – 1919</td>
<td>584 – 1123</td>
</tr>
<tr>
<td>1080 Progressive</td>
<td>SMPTE ST 274</td>
<td>1920 x 1080</td>
<td>0 – 1919</td>
<td>42 - 1121</td>
</tr>
<tr>
<td>2160 Progressive</td>
<td>SMPTE ST 2036-1</td>
<td>3840 x 2160</td>
<td>0 - 3839</td>
<td>0 - 3839</td>
</tr>
<tr>
<td>4320 Progressive</td>
<td>SMPTE ST 2036-1</td>
<td>7680 x 4320</td>
<td>0 - 7679</td>
<td>0 - 7679</td>
</tr>
</tbody>
</table>

6. SOURCE CODING SPECIFICATION

This section establishes a specific subset of the HEVC video compression standard [2].

The constraints and specifications applicable to ATSC 3.0 video bit streams are listed in Sections 6.1 through 6.4.

6.1 HEVC (ISO/IEC 23008-2)

The emitted coded video bitstream shall be compliant with ISO/IEC 23008-2 (HEVC) [2].
Each SPS shall have bit_depth_luma_minus8 and bit_depth_chroma_minus8 both equal to 0 or both equal to 2. This constrains the bit depth of luma and chroma to be 8 or 10 bits and the bit depth of luma and chroma to be identical.

When Spatial Scalable Coding is employed, the HEVC bitstream shall also conform to the constraints specified in 6.3.1.

6.2 Video Formats
The emitted HEVC encoded video streams shall be Legacy SD video, Interlaced HD video or Progressive Video as defined by 6.2.1, 6.2.2, and 6.2.3, respectively.

Advanced features, such as HDR, WCG, and HFR are not supported by Legacy SD or Interlaced HD video formats. These formats are included to maximize compatibility with the existing library of content that has an interlaced scanning structure and might also have an aspect ratio of 4:3. Advanced features are supported by Progressive Video formats.

6.2.1 Legacy SD Video
The ATSC 3.0 Legacy SD video formats are specified in Table 6.1.

Emitted video streams with the picture formats listed in Table 6.1 shall be encoded with the following constraints:

- The bitstream shall conform to HEVC Main 10 Profile, Level 3.1, Main Tier.
- The spatial resolution in both dimensions shall be evenly divisible by 8.
- In 60 Hz regions, the picture rates of 25 and 50 Hz shall be excluded.
- In 50 Hz regions, the picture rates of 24/1.001, 24, 30/1.001, 30, 60/1.001, and 60 Hz shall be excluded.
- The color space container shall be Rec.709 [4].
- The color subsampling shall be 4:2:0.
- Spatial Scalable Coding (Section 6.3.1) shall not be used.
- HDR capabilities (Section 6.3.2) shall not be used.
- 3D capabilities (Section 6.3.3) shall not be used.
- High Frame Rate temporal layering capabilities (Section 6.3.4) shall not be used.

[Note that S34 is currently discussing the contents of the table below. Only the non-highlighted formats have been agreed by the group. The highlighted formats are still under discussion. In particular, S34 is considering whether the formats aside from 704x480i (or 720x480i) should be removed and also whether both the decimated 720 and the decimated 704 sets should both be included or just one of the two. It is also possible that through the course of these discussions, more formats may be added.]
Table 6.1 Legacy SD Video Formats

<table>
<thead>
<tr>
<th>Vertical Size (per field)</th>
<th>Vertical Size (per frame)</th>
<th>Horizontal Size</th>
<th>Pixel aspect ratio</th>
<th>Display Aspect Ratio</th>
<th>Allowed Picture Rates</th>
<th>Progressive/interlaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>480</td>
<td>720</td>
<td>10:11, 40:33</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>N/A</td>
<td>480</td>
<td>720</td>
<td>10:11, 40:33</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>704</td>
<td>10:11, 40:33</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>N/A</td>
<td>480</td>
<td>704</td>
<td>10:11, 40:33</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>640</td>
<td>1:1, 4:3</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>640</td>
<td>1:1, 4:3</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>544</td>
<td>17:20, 80:51</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>544</td>
<td>17:20, 80:51</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>528</td>
<td>40:33, 160:99</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>528</td>
<td>40:33, 160:99</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>480</td>
<td>4:3, 16:9</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>480</td>
<td>4:3, 16:9</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>352</td>
<td>20:11, 80:33</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>240</td>
<td>480</td>
<td>352</td>
<td>20:11, 80:33</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
<tr>
<td>120</td>
<td>240</td>
<td>352</td>
<td>10:11, 40:33</td>
<td>4:3, 16:9</td>
<td>5, 6, 8</td>
<td>I</td>
</tr>
<tr>
<td>120</td>
<td>240</td>
<td>352</td>
<td>10:11, 40:33</td>
<td>4:3, 16:9</td>
<td>1, 2, 3, 4, 7</td>
<td>P</td>
</tr>
</tbody>
</table>

Legend:
picture rate: 1 = 23.976 Hz, 2 = 24 Hz, 3 = 29.97 Hz, 4 = 30 Hz, 5 = 59.94 Hz, 6 = 60 Hz, 7 = 25 Hz, 8 = 50 Hz, 9 = 100 Hz, 10 = 120/1.001 Hz, 11 = 120 Hz.

Footnotes:
1. Note that for 720x480 resolution formats, the active 4:3 or 16:9 picture falls within the center 704 pixels. The additional pixels account for the transitions created by analog blanking.

6.2.2 Interlaced HD video

The ATSC 3.0 Interlaced HD video formats are specified in Table 6.2.

Emitted video streams with the picture formats listed in Table 6.2 shall be encoded with the following constraints:

- The bitstream shall conform to HEVC Main 10 Profile, Level 4.1, Main Tier.
- The spatial resolution in both dimensions shall be evenly divisible by 8.
- In 60 Hz regions, the picture rates of 25 and 50 Hz shall be excluded.
- In 50 Hz regions, the picture rates of 24/1.001, 24, 30/1.001, 30, 60/1.001, and 60 Hz shall be excluded.
- The color space container shall be Rec.709 [4].
- The color subsampling shall be 4:2:0.
- Spatial Scalable Coding (Section 6.3.1) shall not be used.
- HDR capabilities (Section 6.3.2) shall not be used.
- High Frame Rate temporal layering capabilities (Section 6.3.4) shall not be used.
Table 6.2 Interlaced HD Video Formats

<table>
<thead>
<tr>
<th>Vertical Size (per field)</th>
<th>Vertical Size (per frame)</th>
<th>Horizontal Size</th>
<th>Pixel aspect ratio</th>
<th>Display Aspect Ratio</th>
<th>Allowed Picture Rates</th>
<th>Progressive/interlaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>540<sup>1</sup></td>
<td>1080<sup>1</sup></td>
<td>1920</td>
<td>1:1</td>
<td>16:9</td>
<td>5,6,8</td>
<td>I<sup>2</sup></td>
</tr>
<tr>
<td>540<sup>1</sup></td>
<td>1080<sup>1</sup></td>
<td>1440</td>
<td>4:3</td>
<td>16:9</td>
<td>5,6,8</td>
<td>I<sup>2</sup></td>
</tr>
</tbody>
</table>

Legend:
- picture rate: 1 = 23.976 Hz, 2 = 24 Hz, 3 = 29.97 Hz, 4 = 30 Hz, 5 = 59.94 Hz, 6 = 60 Hz, 7 = 25 Hz, 8 = 50 Hz, 9 = 100 Hz, 10 = 120/1.001 Hz, 11 = 120 Hz.
- aspect_ratio_idc: 1 = 1:1 [square samples]

Footnotes:
1 These formats shall be coded with a vertical size of 544 lines per field (1088 lines per frame) in order for the vertical resolution of each picture to be divisible by 8. The bottom 4 lines (8 lines per frame) are black, per MPEG rules.
2 Note that when telecine content is encoded, an inverse telecine process may be applied by the encoder, yielding a coded bitstream of 24 or 24/1.001 Hz progressive 1080x1920 or 1080x1440 pictures. These formats (24 or 24/1.001 Hz progressive) and other progressive formats are described in Section 6.2.3.

6.2.3 Progressive Video

The ATSC 3.0 Progressive Video formats are specified in Section 6.2.3.1.

Emitted video streams with the picture formats specified in Section 6.2.3.1 shall be encoded with the constraints specified in Section 6.2.3.2. Example Progressive Video formats are shown in Annex B.

6.2.3.1 Progressive Video Formats
- The spatial resolution shall be constrained to not more than 2160 lines and 3840 horizontal pixels.
- The spatial resolution in both dimensions shall be evenly divisible by 8.
- The picture rate in 60 Hz regions shall be one of the following in Hz: 24/1.001, 24, 30/1.001, 30, 60/1.001, 60, 120/1.001, 120.
- The picture rate in 50 Hz regions shall be one of the following in Hz: 25, 50, 100.
- The scan shall be progressive.
- The pixel aspect ratio shall be 1:1 (square pixels).

Coded representation of video with 1080 lines (e.g., 1080x1920) may be coded either as 1080 lines or as 1088 lines. When the video is coded as 1088 lines, the bottom 8 lines are black, per MPEG rules.

6.2.3.2 Additional constraints

ATSC 3.0 Progressive Video shall comply with the following constraints:
- The bitstream shall conform to HEVC Main 10 Profile or HEVC Scalable Main 10 Profile, Level 5.2, Main Tier.
- The color space container shall be Rec.709 [4] or Rec.2020 [5].
- The color subsampling shall be 4:2:0.

6.3 Specific Constraints Regarding Advanced Features

In addition to single layer, 2D, standard dynamic range video, it is possible to emit video with advanced features, including two-layer, Spatial Scalable Coding, High Dynamic Range, and 3D...
features. These advanced features are all available for progressive formats. In addition, the 3D feature is available for Interlaced HD formats.

6.3.1 Specific Constraints Regarding Spatial Scalable Coding

When HEVC Spatial Scalable Coding is employed, the bitstream shall comply with the following constraints:

6.3.1.1 General Constraints

- The bitstream shall contain exactly two layers, a base layer and an enhancement layer, and the value of vps_max_layers_minus1 of each VPS shall be set equal to 1.
- The base layer shall conform to HEVC Main 10 Profile and Main Tier.
- The enhancement layer shall conform to HEVC Scalable Main 10 Profile and Main Tier.
- Each of the base layer and the enhancement layer shall conform to one of the formats specified in Section 6.2.3.
- The spatial resolution of the enhancement layer shall be equal to X times that of the base layer both horizontally and vertically. The value of X shall be 1.5, 2, or 3.

6.3.1.2 Picture Rate Related Constraints

The following constraints result in a constant picture rate:

- The vps_vui_present_flag in each VPS shall be set equal to 1, pic_rate_present_vps_flag shall be set equal to 1, pic_rate_present_flag[i][j] shall be set equal to 1 and constant_pic_rate_idc[i][j] shall be set equal to 1 for all i, for all j.
- For the ‘layer set’2 to be carried in the video subsystem of this specification the list of allowed values for avg_pic_rate[i][j] shall be those values that indicate the picture rates defined in Section 6.2.3.1.
- The vui_parameters_present_flag in each SPS shall be set equal to 1, vui_timing_info_present_flag in each SPS shall be set equal to 1, vui_hrd_parameters_present_flag in each SPS shall be set equal to 1, and fixed_pic_rate_general_flag[i] shall be set equal to 1 or fixed_pic_rate_within_cvs_flag[i] shall be set equal to 1 for all values of i in the range 0 to maxNumSubLayersMinus1, inclusive.
- If vps_num_hrd_parameters is greater than 0, the following shall apply:
 - For each hrd_parameters() syntax structure in the VPS that applies to the layer set to be carried in the video subsystem of this specification: fixed_pic_rate_general_flag[i] shall be set equal to 1 or fixed_pic_rate_within_cvs_flag[i] shall be set equal to 1 for all values of i in the range 0 to maxNumSubLayersMinus1, inclusive.
 - For each value of i in the range 0 to maxNumSubLayersMinus1, inclusive, the value of the syntax element elemental_duration_in_tc_minus1[i] in the hrd_parameters() syntax structure applicable to the enhancement layer shall be equal to the value of the syntax element elemental_duration_in_tc_minus1[i] in the hrd_parameters() syntax structure applicable to the base layer.

2 The term ‘layer set’ is defined by the HEVC standard [2].
6.3.1.3 Bit Depth, Dynamic Range, and Color Space Related Constraints

- The bit depth of luma, as specified by `bit_depth_luma_minus8`, shall be identical in the base layer and its corresponding enhancement layer.
- The bit depth of chroma, as specified by `bit_depth_chroma_minus8`, shall be identical in the base layer and its corresponding enhancement layer.
- When the HDR capabilities (Section 6.3.2) are used for the base layer, the HDR capabilities (Section 6.3.2) shall also be used for its corresponding enhancement layer. When the HDR capabilities (Section 6.3.2) are not used for the base layer, the HDR capabilities (Section 6.3.2) shall not be used for its corresponding enhancement layer.
- The color space container for the base layer shall be identical in the base layer and its corresponding enhancement layer.
- The `colour_mapping_enabled_flag` shall be set to 0. [Note: S34 is awaiting a response to our liaison to MPEG before finalizing this text; MPEG’s response is expected to contain information pertinent to this topic.]

6.3.1.4 Random Access Related Constraints

- The random access picture period of the enhancement layer shall be equal to or greater than the random access picture period of the base layer. When an access unit includes an IRAP picture with `nuh_layer_id` greater than 0, it shall also include an IRAP picture with `nuh_layer_id` equal to 0.

6.3.2 Specific Constraints Regarding HDR

S34 is currently considering responses to the Call for Contributions to ATSC members. Several proposals for HDR for ATSC 3.0 have been received. S34 expects that HDR capabilities will be specified in a future revision of this document.

6.3.3 Specific Constraints Regarding 3D

The compression format for the reference view video and the additional view video shall be one of the formats described in Section 6.2.2 or 6.2.3. The compression formats of both views do not need to be identical. 3D video is not supported by the Legacy SD video format as defined by Section 6.2.1.

6.3.3.1 Aspect ratio

Both reference and additional view videos shall have the same aspect ratio of the active area. If the aspect ratios of L/R pictures are not exactly identical, the smaller input pictures shall be letterboxed (or pillar boxed) before compression to make the both views have the same aspect ratio of the active area, and the existence of the bars embedded in the transmitted pictures shall be indicated by Active Format Description (AFD) and optionally Bar Data information as specified in Section 6.4.

6.3.3.2 Picture rate

The picture rate of the additional view shall be that of the reference view divided by an integer of one or greater.
6.3.3.3 Multiview view position SEI message

The multiview view position SEI message Table 6.3 is intended to indicate left and right view of the stereoscopic video carried in SHVC³.

<table>
<thead>
<tr>
<th>Table 6.3 Multiview View Position SEI Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
</tr>
<tr>
<td>multiview_view_position(payloadSize) {</td>
</tr>
<tr>
<td>num_views_minus1</td>
</tr>
<tr>
<td>for (i = 0; i <= num_views_minus1; i++)</td>
</tr>
<tr>
<td>view_position[i]</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>Format</td>
</tr>
<tr>
<td>ue(v)</td>
</tr>
</tbody>
</table>

The Multiview view position SEI message as defined in [2] is identified by the payloadType value equal to 180. For the fixed & mobile hybrid 3D service, the view_position[i] in the SEI message indicates the order of the view with DependencyId equal to i among all the views from left to right for the purpose of display, with the order for the left-most view being equal to 0 and the value of the order increasing by 1 for next view from left to right. For example, when the base layer video is right view and the enhancement layer video is the left view, the view_position[0] will be 1 and the view_position[1] will be 0.

6.3.3.4 Multiview scene information SEI message

The multiview scene information SEI message is shown in Table 6.4.

<table>
<thead>
<tr>
<th>Table 6.4 Multiview Scene Information SEI Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
</tr>
<tr>
<td>multiview_scene_info(payloadSize) {</td>
</tr>
<tr>
<td>min_disparity</td>
</tr>
<tr>
<td>max_disparity_range</td>
</tr>
<tr>
<td>}</td>
</tr>
<tr>
<td>Format</td>
</tr>
<tr>
<td>se(v)</td>
</tr>
<tr>
<td>ue(v)</td>
</tr>
</tbody>
</table>

The payloadType of the Multiview scene information SEI message shall be equal to 178 as defined in [2]. The Multiview scene information SEI message could be used for processing the decoded views prior to rendering on a 3D display. The minimum disparity indicates the 3D location of the front-most object in the video. To render the receiver-generated graphics (e.g. OSD) in front of the decoded views on a 3D display, the minimum disparity in the multiview scene information SEI message should be included.

6.3.4 Specific Constraints Regarding High Frame Rate Temporal Layering

When an HEVC Main 10 Profile or HEVC Scalable Main 10 Profile bitstream has a constant picture rate (as indicated by the presence of elemental_duration_in_tc_minus1[]) equal to 120, 120/1.001, or 100 pictures per second (as specified by elemental_duration_in_tc_minus1[]), Temporal Layering may be applied; otherwise Temporal Layering shall not be applied.

When Temporal Layering is applied, the bitstream shall comply with the following constraints:

³ SHVC corresponds to the Scalable Main and Scalable Main 10 Profiles defined by the HEVC standard [2].
• The bitstream shall contain exactly two sub-layers, with TemporalId equal to 0 and 1, respectively, and the value of sps_max_sub_layers_minus1 of each SPS shall be set equal to 1.

• The sub-layer representation with TemporalId equal to 0 shall have a constant picture rate (as indicated by the presence of elemental_duration_in_tc_minus1[0]), and the picture rate shall be exactly half of that of the entire bitstream (i.e., elemental_duration_in_tc_minus1[0] is equal to 2 * elemental_duration_in_tc_minus1[1]).

• The value of sub_layer_level_present_flag[0] shall be equal to 1. This constraint requires the signaling of the Level of the sub-layer representation with TemporalId equal to 0.

When Temporal Layering is applied to the base layer and an enhancement layer exists, the enhancement layer shall have the same picture rate as the base layer, and Temporal Layering shall be applied to the enhancement layer in the same way as the base layer.

When Temporal Layering is not applied to the base layer, Temporal Layering shall not be applied to the enhancement layer.

6.4 Bit Stream Specifications in Addition to Video Coding
This section covers the specific data carried in the SEI RBSP and VUI sections of the video syntax. The syntax used for the insertion of AFD and Bar Data in the SEI payload shall be as specified in the following sections.

6.4.1 Carriage of Active Format Description (AFD) and Bar Data
AFD and bar data, when present, shall be carried according to ANSI/SCTE 128-1 [7], Section 8.1 as further constrained and described in 6.4.2 of this document.

Note: Additional background on AFD and bar data may be found in ETSI TS 101 154 V2.1.1 [16], the Digital Receiver Implementation Guidelines 0, and CEA CEB16 [17].

6.4.2 AFD and Bar Data
AFD and bar data shall be as specified by ANSI/SCTE 128-1 [7], Section 8.2.

Note (informative): The Display Aspect Ratio in Table 6.1, Table 6.2, and Table B.1.1 refers to the aspect ratio of the active image area before AFD and bar data are applied. Display devices can use AFD and bar data to crop and/or expand the picture that is displayed to the user. For example, a service including video encoded at a resolution of 3840x2160 may have AFD and bar data that indicates that the active image area is contained within a 3840x1620 rectangle.

Note (informative): SMPTE 2016-1 does not include Ultra HD resolutions at this time and is in the process of being updated.

6.4.3 Optional Carriage of Closed Captions in the Video Stream
ATSC 3.0 requires the broadcast carriage of closed captions as files that are formatted as "TTML Text and Image Profiles for Internet Media Subtitles and Captions (IMSC1)" [8] as required by ATSC [9] (“Closed Captions and Subtitles Standard”). However, some broadcast signals are redistributed to viewers by networks that deliver closed captions as specified by CEA-708 [10] and carry the closed caption data embedded in the compressed video signal. In order to support interoperability with such networks, closed caption data may additionally be carried within the

4 Base and enhancement layers are used in spatial scalable coding as described in 6.3.1.1.
Supplemental Enhancement Information (SEI) of the HEVC video NAL unit. If this method is employed, carriage in this manner shall be as specified in Section 8 of ANSI/SCTE128-1 [7].

7. SIGNALING OF VIDEO CHARACTERISTICS

The following table includes video characteristics that can be signaled:

Table 7.1 Video Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Codec</td>
<td>Indicates codec of the associated video component</td>
<td>HEVC(^1)</td>
</tr>
<tr>
<td>2</td>
<td>Profile</td>
<td>Indicates profile of the associated video component</td>
<td>Main 10, Scalable; Main 10</td>
</tr>
<tr>
<td>3</td>
<td>Level</td>
<td>Indicates level of the associated video component</td>
<td>3.1; 4.1; 5.1; 5.0; 5.2</td>
</tr>
<tr>
<td>4</td>
<td>Tier</td>
<td>Indicates tier of the associated video component</td>
<td>Main(^1)</td>
</tr>
<tr>
<td>5</td>
<td>Color space container</td>
<td>Indicates the color space container of the associated video component</td>
<td>BT.709; BT.2020</td>
</tr>
<tr>
<td>6</td>
<td>SCG compatibility</td>
<td>Indicates whether WCG video is compatible with SCG</td>
<td>Non-compatible; Compatible</td>
</tr>
<tr>
<td>7</td>
<td>dependencyComponentId</td>
<td>Indicates the component id of the video component that has to be decoded</td>
<td>Component id of the base layer video</td>
</tr>
<tr>
<td></td>
<td></td>
<td>before decoding the associated video component</td>
<td>A/331 Annex B.9 [11]</td>
</tr>
<tr>
<td>8</td>
<td>3D</td>
<td>Indicates whether the associated video components are part of 3D service</td>
<td>2D; 3D</td>
</tr>
<tr>
<td>9</td>
<td>View Position</td>
<td>Indicates the view position of each video component of 3D service</td>
<td>Left; Right</td>
</tr>
<tr>
<td>10</td>
<td>Scene disparity</td>
<td>Indicates the range of disparity within which the scene objects are located</td>
<td>Minimum disparity: integer between -1024 and 1023, inclusive;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 3D program</td>
<td>Maximum disparity: integer between 0 and 2047, inclusive.</td>
</tr>
<tr>
<td>11</td>
<td>Frame Rate</td>
<td>Indicates the frame rate of the video component</td>
<td>24/1.001; 24; 30/1.001; 30; 50; 60/1.001; 60; 100; 120/1.001; 120</td>
</tr>
<tr>
<td>12</td>
<td>Temporal Layering</td>
<td>Indicates whether 100, 120/1.001, and 120 Hz video is encoded using</td>
<td>Not using temporal scalability; Using temporal layering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>temporal layering</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
\(^1\) Reserved fields can be used to enable future extensibility, especially in the case where there exists only a single option.

For information about signaling in the transport layer, see ATSC A/331 Section (TBD) [11].
A.1 TELEVISION PRODUCTION STANDARDS
The television production standards and associated spatial resolutions shown in Table A.1.1 define video input formats that are intended to enhance interoperability in the overall use of the ATSC 3.0 Digital Television System.

Table A.1.1 Standard Video Production Formats

<table>
<thead>
<tr>
<th>Video Standard</th>
<th>Active Lines</th>
<th>Active Samples/Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPTE ST 274 [13]</td>
<td>1080</td>
<td>1920</td>
</tr>
<tr>
<td>SMPTE ST 296 [14]</td>
<td>720</td>
<td>1280</td>
</tr>
<tr>
<td>SMPTE ST 125 [15]</td>
<td>483</td>
<td>720</td>
</tr>
</tbody>
</table>

Note that the emitted video format is not necessarily identical to the production format of the video input. For instance, in the case of pulldown, the input frame or field rate might be 60 frames per second, but the encoder might detect repeated frames and deliver a picture rate of 24 pictures per second for emission. Similarly, the video input signal might be decimated in order to provide an emitted video signal with a reduced resolution in order to provide a low bit rate result.
Annex B: Example Progressive Video Formats
(Informative)

B.1 EXAMPLE PROGRESSIVE VIDEO FORMATS
Example Progressive Video formats are shown in Table B.1.1.

Table B.1.1 Example Progressive Video formats

<table>
<thead>
<tr>
<th>Vertical Size</th>
<th>Horizontal Size</th>
<th>aspect_ratio_idc</th>
<th>Display Aspect Ratio</th>
<th>Picture Rates</th>
<th>Progressive/interlaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>640</td>
<td>1</td>
<td>16:9</td>
<td>1,2,3,4,5,6,7,8</td>
<td>P</td>
</tr>
<tr>
<td>540</td>
<td>960</td>
<td>1</td>
<td>16:9</td>
<td>1,2,3,4,5,6,7,8</td>
<td>P</td>
</tr>
<tr>
<td>720</td>
<td>1280</td>
<td>1</td>
<td>16:9</td>
<td>1,2,3,4,5,6,7,8,9,10,11</td>
<td>P</td>
</tr>
<tr>
<td>1080</td>
<td>1920</td>
<td>1</td>
<td>16:9</td>
<td>1,2,3,4,5,6,7,8,9,10,11</td>
<td>P</td>
</tr>
<tr>
<td>1440</td>
<td>2560</td>
<td>1</td>
<td>16:9</td>
<td>1,2,3,4,5,6,7,8,9,10,11</td>
<td>P</td>
</tr>
<tr>
<td>2160</td>
<td>3840</td>
<td>1</td>
<td>16:9</td>
<td>1,2,3,4,5,6,7,8,9,10,11</td>
<td>P</td>
</tr>
</tbody>
</table>

Legend:
picture rate: 1 = 23.976 Hz, 2 = 24 Hz, 3 = 29.97 Hz, 4 = 30 Hz, 5 = 59.94 Hz, 6 = 60 Hz, 7 = 25 Hz, 8 = 50 Hz, 9 = 100 Hz, 10 = 120/1.001 Hz, 11 = 120 Hz.
aspect_ratio_idc: 1 = 1:1 [square samples]
Annex C: Fixed/Mobile Hybrid UHD 3D Television System (Informative)

C.1 OVERVIEW

In case of UHD and HD simulcast broadcast delivery, the left view and the right view of a stereoscopic 3D video component can be a fixed UHD video and a mobile HD video, respectively. There is no dependency between two views as two views are coded independently. As shown in Figure C.1.1, each view can be delivered via separate PLPs (it can be differentiated according to ATSC 3.0 physical layer multiplexing schemes), and decoded independently. That is, a mobile receiver acquires HD right view video data from a PLP and offers a mobile HD service. A fixed receiver acquires UHD video data from a different PLP and provides a UHD service. Moreover, when a receiver can get data from two PLPs in ATSC 3.0 physical layer frames simultaneously, the receiver acquires an UHD left view and a HD right view video simultaneously and provides a 3D service by combining two views.

Figure C.1.1 Simulcast of a mobile HD right view and a fixed UHD left view.

By using layered coding (i.e., SHVC), the HD view can be coded in a base layer and the UHD view can be coded through both base and enhancement layers. Figure C.1.2 describes the broadcast system for the fixed/mobile hybrid 3DTV service by using SHVC. Each layer can be delivered via same or separate PLPs. That is, the base layer can be delivered via a PLP for mobile service and the enhancement layer can be delivered via a different PLP. Thus, two PLPs, a more-robust one for a base layer and a less-robust higher-bandwidth one for an enhancement layer can be used for this SHVC-based approach. That is, a mobile receiver acquires HD right view video data from an ATSC 3.0 physical layer frame and offers a mobile HD service. Moreover, a fixed receiver needs
to acquire the UHD view by using both the base and the enhancement layers from two different PLPs. The receiver displays 3D service by combining two views.

Figure C.1.2 Broadcast of a mobile HD right view and a fixed UHD left view using SHVC.

End of Document